Research

Preprint

  • Q. Shi, J. Peng, K. Yuan, X. Wang and Q. Ling.
    Optimal complexity in Byzantine-robust distributed stochastic optimization with data heterogeneity, 2025.

  • L. Jin, X. Wang and X. Chen.
    Nonconvex nonsmooth multicomposite optimization and its applications to recurrent neural networks, 2025.

  • Y. Cui, S. Guo, X. Wang and X. Xiao.
    A brief review of recent advances on chance constrained programs, 2024.

  • K. Li, L. Bai, X. Wang and H. Wang.
    Anderson acceleration for nonsmooth optimization algorithms: local convergence via active manifold identification, 2024.

  • J. Ju, X. Wang and D. Xu.
    Stochastic approximation algorithms for DR-submodular maximization with convex functional constraints, 2024.

  • D. He, G. Yuan, X. Wang and P. Xu.
    Block coordinate descent methods for optimization under J-orthogonality constraints with applications, 2024.

  • Y. Cui, X. Wang and X. Xiao.
    A two-phase stochastic momentum-based algorithm for nonconvex expectation-constrained optimization, 2024.

  • X. Yang, H. Wang, Y. Zhu and X. Wang.
    Minimization over the nonconvex sparsity constraint using a hybrid first-order method, 2024.

  • J. Guo, X. Wang and X. Xiao.
    Preconditioned primal-dual gradient methods for nonconvex composite and finite-sum optimization, 2023.

  • J. Guo, X. Wang and X. Xiao.
    Dynamical convergence analysis of linearized proximal stochastic ADMM for nonconvex optimization, 2023.

Publication

  • H. Zheng, R. Wang, X. Wang and Q. Ling.
    Can Fairness and Robustness Be Simultaneously Achieved Under Byzantine Attacks?.
    ICASSP, 2025.

  • L. Jin and X. Wang.
    Stochastic nested primal-dual method for nonconvex constrained composition optimization.
    Mathematics of Computation, 94, 305-358, 2025.

  • Q. Shi, X. Wang and H. Wang.
    A Momentum-based linearized augmented Lagrangian method for nonconvex constrained stochastic optimization.
    Mathematics of Operations Research, 2025, https://doi.org/10.1287/moor.2022.0193.

  • X. Wang.
    Complexity analysis of inexact cubic-regularized primal-dual algorithms for finding second-order stationary points.
    Mathematics of Computation, 2024, https://doi.org/10.1090/mcom/4029.

  • Y. Lian, X. Wang, D. Xu and Z. Zhao.
    Zeroth-order stochastic approximation algorithms for DR-submodular optimization.
    Journal of Machine Learning Research, 25(391):1−55, 2024.

  • J. Ju, X. Wang and D. Xu.
    Online nonmonotone DR submodular maximization in the bandit setting.
    Journal of Global Optimization, 90:619–649, 2024.

  • X. Wang and X. Chen.
    Complexity of finite-sum optimization with nonsmooth composite functions and non-Lipschitiz regularization.
    SIAM Journal on Optimization, 34(3), 2472-2502, 2024.

  • Y. Lian, D. Du, X. Wang, D. Xu and Y. Zhou.
    Stochastic variance reduction for DR-submodular maximization.
    Algorithmica, 86:1335–1364, 2024.

  • J.N. Wang, X. Wang and L.W. Zhang.
    A stochastic Newton method for nonlinear equations.
    Journal of Computational Mathematics, 41, 1192-1221, 2023.

  • X. Wang.
    Stochastic approximation methods for nonconvex constrained optimization (in Chinese).
    Operations Research Transactions, 27(4),2023.

  • J.N. Wang, X. Wang and L.W. Zhang.
    Stochastic regularized Newton methods for nonlinear equations.
    Journal of Scientific Computing, 94(51), 2023.

  • W.Y. Cheng, X. Wang and X. Chen.
    An interior stochastic gradient method for a class of non-Lipschitz optimization problems.
    Journal of Scientific Computing, 92(42), 2022.

  • L. Jin and X. Wang.
    A stochastic primal-dual method for a class of nonconvex constrained optimization.
    Computational Optimization and Applications, 83, 143-180, 2022.

  • F. He, X. Wang and X. Chen.
    A penalty relaxation method for image processing using Euler's Elastica Model.
    SIAM Journal on Imaging Sciences, 14(1), 389-417, 2021.

  • X. Wang and H. Zhang.
    Inexact proximal stochastic second-order methods for nonconvex composite optimization.
    Optimization Methods and Software, 35(4), 808-835, 2020.

  • Y. Liu, X. Wang and T.D. Guo.
    A linearly convergent stochastic recursive gradient method for convex optimization.
    Optimization Letters, 14: 2265-2283, 2020.

  • X.Y. Wang, X. Wang and Y. Yuan.
    Stochastic Proximal Quasi-Newton methods for Nonconvex Composite Optimization.
    Optimization Methods and Software, 34: 922-948,2019.

  • X. Wang, S. Ma, D. Goldfarb and W. Liu.
    Stochastic quasi-Newton methods for nonconvex stochastic optimization.
    SIAM Journal on Optimization, 27(2), pp 927-956, 2017.

  • X. Wang, S. Ma and Y. Yuan.
    Penalty methods with stochastic approximation for stochastic nonlinear programming.
    Mathematics of Computation, 86, pp 1793-1820, 2017.

  • X. Wang, S. Wang and H. Zhang.
    Inexact proximal stochastic gradient method for convex composite optimization.
    Computational Optimization and Applications, 68: 579-618, 2017.

  • X. Wang and H. Zhang.
    An augmented Lagrangian affine scaling method for nonlinear programming.
    Optimization Methods and Software, 30(5), 934-964, 2015.

  • X. Wang and Y. Yuan.
    An augmented Lagrangian trust region method for equality constrained optimization.
    Optimization Methods and Software, 30(3), pp 559-582, 2015.

  • X. Liu, Z. Wen, X. Wang, M. Ulbrich and Y. Yuan.
    On the Analysis of the Discretized Kohn-Sham Density Functional Theory.
    SIAM Journal on Numerical Analysis, 53(4), pp 1758-1785, 2015.

  • X. Liu, X. Wang, Z. Wen and Y. Yuan.
    On the convergence of the self-consistent field iteration in Kohn-Sham density functional theory.
    SIAM Journal on Matrix Analysis and Applications, 35-2, pp. 546-558, 2014.

  • X. Wang, Y. Yuan.
    A trust region method based on a new affine scaling technique for simple bounded optimization.
    Optimization Methods and Software, 28(4), pp 871-888, 2013.

  • X. Wang.
    A trust region affine scaling method for bound constrained optimization.
    Acta Mathematica Sinica, English Series, 29(1), pp 159-182, 2013.

  • X. Huang, Z. Lei, M. Fan, X. Wang and S.Z. Li.
    A Regularized Discriminative Spectral Regression Method for Heterogeneous Face Matching.
    IEEE Transaction on Image Processing, 22(1), pp 353-362, 2013. 

  • X. Wang.
    An active set trust region method for general bound constrained optimization (in Chinese).
    Sci Sin Math, 41(4): 377–391, 2011.